Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

The set Q consists of the following terms:

f(f(a, x0), x1)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(y, f(x, f(a, f(h(a), a))))
F(f(a, x), y) → F(a, f(h(a), a))
F(f(a, x), y) → F(x, f(a, f(h(a), a)))
F(f(a, x), y) → F(h(a), a)

The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(y, f(x, f(a, f(h(a), a))))
F(f(a, x), y) → F(a, f(h(a), a))
F(f(a, x), y) → F(x, f(a, f(h(a), a)))
F(f(a, x), y) → F(h(a), a)

The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(y, f(x, f(a, f(h(a), a))))
F(f(a, x), y) → F(x, f(a, f(h(a), a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule F(f(a, x), y) → F(x, f(a, f(h(a), a))) we obtained the following new rules:

F(f(a, f(a, y_0)), x1) → F(f(a, y_0), f(a, f(h(a), a)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
QDP
                  ↳ MNOCProof
                  ↳ SemLabProof

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(y, f(x, f(a, f(h(a), a))))
F(f(a, f(a, y_0)), x1) → F(f(a, y_0), f(a, f(h(a), a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
QDP
                  ↳ SemLabProof

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(y, f(x, f(a, f(h(a), a))))
F(f(a, f(a, y_0)), x1) → F(f(a, y_0), f(a, f(h(a), a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(y, f(x, f(a, f(h(a), a))))

Q is empty.
We have to consider all (P,Q,R)-chains.
We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.a: 1
f: 0
h: 0
F: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-1(a., x), y) → F.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-1(f.1-0(a., x), y) → F.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-1(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-1(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-1(a., x), y) → F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-1(a., x), y) → f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-0(a., x), y) → f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-0(f.1-1(a., x), y) → f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
QDP
                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-1(a., x), y) → F.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-1(f.1-0(a., x), y) → F.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-1(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-1(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-1(a., x), y) → F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-1(a., x), y) → f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-0(a., x), y) → f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-0(f.1-1(a., x), y) → f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
                          ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-1(a., x), y) → F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-1(a., x), y) → f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-1(f.1-0(a., x), y) → f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
f.0-0(f.1-1(a., x), y) → f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

F.0-0(f.1-1(a., x), y) → F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
The following rules are removed from R:

f.0-0(f.1-1(a., x), y) → f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
Used ordering: POLO with Polynomial interpretation [25]:

POL(F.0-0(x1, x2)) = x1 + x2   
POL(a.) = 0   
POL(f.0-0(x1, x2)) = x1 + x2   
POL(f.0-1(x1, x2)) = x1 + x2   
POL(f.1-0(x1, x2)) = x1 + x2   
POL(f.1-1(x1, x2)) = 1 + x1 + x2   
POL(h.1(x1)) = x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ UsableRulesReductionPairsProof
QDP
                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) → F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ UsableRulesReductionPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F.0-0(f.1-0(a., x), y) → F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))
The remaining pairs can at least be oriented weakly.

F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
Used ordering: Polynomial interpretation [25]:

POL(F.0-0(x1, x2)) = x1 + x2   
POL(a.) = 0   
POL(f.0-0(x1, x2)) = 0   
POL(f.0-1(x1, x2)) = 0   
POL(f.1-0(x1, x2)) = 1 + x2   
POL(h.1(x1)) = 0   

The following usable rules [17] were oriented:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ UsableRulesReductionPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.))))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(F.0-0(x1, x2)) = x1 + x2   
POL(a.) = 0   
POL(f.0-1(x1, x2)) = x1 + x2   
POL(f.1-0(x1, x2)) = x1 + x2   
POL(h.1(x1)) = x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ UsableRulesReductionPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ UsableRulesReductionPairsProof
QDP
                                          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))

R is empty.
The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) → F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:

POL(F.0-0(x1, x2)) = x1   
POL(a.) = 1   
POL(f.0-1(x1, x2)) = 0   
POL(f.1-0(x1, x2)) = 1 + x1 + x2   
POL(h.1(x1)) = 0   

The following usable rules [17] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ ForwardInstantiation
                ↳ QDP
                  ↳ MNOCProof
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ UsableRulesReductionPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ UsableRulesReductionPairsProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
QDP
                                              ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.